Kim MS, MS, Glassman D, Ahumada AL, et al. Mechanisms and rational

combinations with GP-2250, novel oxathiazine derivative in ovarian cancer.

Cancer Research. 2023; 87(7_supplement): 528.

Background: GP-2250 (**Fig. 1**), a novel analog of taurultam (TRLT), has emerged as a potent anti-neoplastic drug; however, the mechanisms underlying its effects are not well understood. Here, we investigated the mechanism of action and the biological effects of GP-2250 using *in vitro* and *in vivo* models.

Methods: We carried out a series of *in vitro* experiments including MTT assay, Annexin V/PI assay, colony formation assay, reverse-phase protein array (RPPA), and HRLC/IC analysis to determine the biological activity of GP-2250 and investigate the mechanism of action. *In vivo* experiments were carried out to determine the therapeutic efficacy of GP-2250 alone and in combination with standard-of-care drugs (e.g., paclitaxel, cisplatin topotecan, and poly ADP-ribose polymerases (PARP) inhibitors.

Results: We investigated the cytotoxic effect of GP-2250 in 10 ovarian cancer cell lines and found that HRD ovarian cancer cells (e.g., Kuramochi, OVCAR4, and OVCAR8) were more vulnerable to GP-2250 than HRP ovarian cancer cells (e.g., A2780 and OVCAR5). In addition, the GP-2250 combination with a PARP inhibitor showed the most synergistic effects. There was no difference among the PARP inhibitors (e.g., olaparib, niraparib, and rucaparib) with regard to the combinatorial effect with GP-2250. RPPA analyses revealed that GP-2250 inhibited hypoxia-inducible factor-1a, AKT, and mTOR activation and expression level. Ultra-high resolution mass spectrometry (HRMS) analysis also revealed that hexokinase2 activity and expression were significantly reduced by GP-2250 treatment. Furthermore, GP-2250 also reduced glycolysis and ATP synthesis in cancer cells. In vivo pharmacodynamic experiment using the OVCAR8 mouse model demonstrated that a dose of 500 mg/kg GP-2250 was the most effective in downregulating AKT and mTOR activation and expression. In the in vivo therapy experiment using an orthotopic mouse model, a combination of GP-2250 and PARP inhibitors (olaparib, niraparib, or rucaparib) or bevacizumab showed a significant reduction of tumor weights (0.16 \pm 0.05 g, 0.13 \pm 0.06 g, 0.29 ± 0.05 g, and 0.07 ± 0.03 g, respectively) and nodules (1.56 ± 0.44 , 1.89 ± 0.59 , 3.11 \pm 0.59, and 0.78 \pm 0.2, respectively) compared to those treated with a vehicle (tumor weight, 0.95 \pm 0.1 g and nodules, 8.4 \pm 0.65), control IgG groups (tumor weight, 0.86 \pm 0.38 and nodules, 9.4 \pm 3.92) or the monotherapy groups; GP-2250 (tumor weight, 2.9 \pm 0.48 g, and nodules, 2.9 \pm 0.48), olaparib (tumor weight, 0.53 \pm 0.09 g, and nodules, 3.3 \pm 0.64), niraparib (tumor weight, 0.38 \pm 0.05 g, and nodules, 3.4 \pm 0.44), rucaparib, (tumor weight, 0.52 \pm 0.1 g, and nodules, 4.85 \pm 0.79), and bevacizumab (tumor weight, 0.43 \pm 0.08 g, and nodules, 3.8 ± 0.71), respectively.

Conclusions: Taken together, our data indicate that GP-2250 exerts profound effects on tumor metabolism and combination with PARP inhibitors or bevacizumab showed promising anti-tumor efficacy. These findings could have implications for the clinical development of GP-2250.