

Mechanisms and rational combinations with GP-2250, a novel oxathiazine derivative, in ovarian cancer

ABSTRACT

Background: GP-2250 (Fig. 1), a novel analog of taurultam (TRLT), has emerged as a potent anti-neoplastic drug; however, the mechanisms underlying its effects are not well understood. Here, we investigated the mechanism of action and the biological effects of GP-2250 using in vitro and in vivo models.

Methods: We carried out a series of *in vitro* experiments including MTT assay, Annexin V/PI assay, colony formation assay, reverse-phase protein array (RPPA), and HRLC/IC analysis to determine the biological activity of GP-2250 and investigate the mechanism of action. In vivo experiments were carried out to determine the therapeutic efficacy of GP-2250 alone and in combination with standard-of-care drugs (e.g., paclitaxel, cisplatin topotecan, and poly ADP-ribose polymerases (PARP) inhibitors.

Results: We investigated the cytotoxic effect of GP-2250 in 10 ovarian cancer cell lines and found that HRD ovarian cancer cells (e.g., Kuramochi, OVCAR4, and OVCAR8) were more vulnerable to GP-2250 than HRP ovarian cancer cells (e.g., A2780 and OVCAR5). In addition, the GP-2250 combination with a PARP inhibitor showed the most synergistic effects. There was no difference among the PARP inhibitors (e.g., olaparib, niraparib, and rucaparib) with regard to the combinatorial effect with GP-2250. RPPA analyses revealed that GP-2250 inhibited hypoxia-inducible factor-1 α , AKT, and mTOR activation and expression level. Ultra-high resolution mass spectrometry (HRMS) analysis also revealed that hexokinase2 activity and expression were significantly reduced by GP-2250 treatment. Furthermore, GP-2250 also reduced glycolysis and ATP synthesis in cancer cells. In vivo pharmacodynamic experiment using the OVCAR8 mouse model demonstrated that a dose of 500 mg/kg GP-2250 was the most effective in downregulating AKT and mTOR activation and expression. In the *in vivo* therapy experiment using an orthotopic mouse model, a combination of GP-2250 and PARP inhibitors (olaparib, niraparib, or rucaparib) or bevacizumab showed a significant reduction of tumor weights (0.16 \pm 0.05 g, 0.13 \pm 0.06 g, 0.29 ± 0.05 g, and 0.07 ± 0.03 g, respectively) and nodules (1.56 ± 0.44, 1.89 ± 0.59, 3.11) \pm 0.59, and 0.78 \pm 0.2, respectively) compared to those treated with a vehicle (tumor weight, 0.95 \pm 0.1 g and nodules, 8.4 \pm 0.65), control IgG groups (tumor weight, 0.86 \pm 0.38 and nodules, 9.4 \pm 3.92) or the monotherapy groups; GP-2250 (tumor weight, 2.9 \pm 0.48 g, and nodules, 2.9 ± 0.48), olaparib (tumor weight, 0.53 ± 0.09 g, and nodules, 3.3 ± 0.48 0.64), niraparib (tumor weight, 0.38 \pm 0.05 g, and nodules, 3.4 \pm 0.44), rucaparib, (tumor weight, 0.52 \pm 0.1 g, and nodules, 4.85 \pm 0.79), and bevacizumab (tumor weight, 0.43 \pm 0.08 g, and nodules, 3.8 ± 0.71), respectively.

Conclusions: Taken together, our data indicate that GP-2250 exerts profound effects on tumor metabolism and combination with PARP inhibitors or bevacizumab showed promising anti-tumor efficacy. These findings could have implications for the clinical development of GP-2250.

Figure 1. Molecular structure of TRLT and GP-2250. GP-2250, 1,4,5-oxathiazan-dioxide-4,4 is an oxathiazan derivative like TRLT with a molecular weight of 137.25 g/mol.

OBJECTIVES

To determine the biological effects of GP-2250, we investigate the underlying mechanism of action and the therapeutic effect of GP-2250 in combination with the PARP inhibitors, olaparib, niraparib, and rucaparib and with bevacizumab in ovarian cancer models in vivo and in vitro

MATERIALS & METHODS

- Ovarian cancer cell lines: A2780, Coav3, HeyA8, HeyA8-MDR, Kuramochi, OVCAR3, OVCAR4, OVCAR5, OVACR8, SKOV3
- In vitro assays: Cell viability assay, Western blotting, Colony formation assay, Reversephase protein array, Ultra-high resolution mass spectrometry analysis
- In vivo model of ovarian cancer: Pharmacodynamic study and therapeutic experiment using OVCAR8 ovarian cancer model

Mark S. Kim¹, Deanna Glassman¹, Adrian Lankenau Ahumada¹, Emine Bayraktar¹, Nicholas B. Jennings¹,

Robiya Joseph¹, Sanghoon Lee¹, Robert L. Coleman², Anil K. Sood¹

¹ Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX USA: ² US Oncology Research, The Woodlands, TX USA

Figure 6. Antitumor effect of GP-2250 combined with olaparib or bevacizumab in an OVCAR8 mouse model. (A) Schematic of in vivo experiment. Body weight (B), tumor weight (C), and nodule number (D). ns, not significant, ***P* < 0.01; ****P* < 0.001; ****, *P* < 0.0001 (Student *t*-test).

- Vivo. Cancers (Basel) 2022;14

Making Cancer History®

Figure 7. Proposed mechanism of GP-2250

CONCLUSION

✤ GP-2250's antineoplastic effects on ovarian cancer cells include inhibition of glycolysis via modulation of HK2 activation and expression and inhibition of HIF-1-induced VEGF secretion.

GP-2250 combination with PARP inhibitors or bevacizumab is well tolerated and shows profound antitumor efficacy.

Our study suggests rational combinations for testing in clinical trials.

REFERENCES

Gong L, et al., The pharmacokinetics of taurolidine metabolites in healthy volunteers. J Clin Pharmacol 2007;47:697

2. Buchholz M, et al., Innovative substance 2250 as a highly promising anti-neoplastic agent in malignant pancreatic carcinoma in vitro and in vivo. BMC Cancer 2017;17:216

Buchholz M, et al., New Therapy Options for Neuroendocrine Carcinoma of the Pancreas-The Emergent Substance GP-2250 and Gemcitabine Prove to Be Highly Effective without the Development of Secondary Resistances In Vitro and In

Claudia Baron et al., Substance GP-2250 as a New Therapeutic Agent for Malignant Peritoneal Mesothelioma – A 3D in vitro study. Int J Mol Sci 2022;23:7293